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LElTER TO THE EDITOR 

Relation of the refractive index to the dielectric constant 
containing Doppler-like spatial dispersion 
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CECAM, BLtiment 506, UniversitC Paris XI, 91 Campus d’Orsay, France 

Received 3 September 1975, in final form 3 May 1976 

Abstract. It is suggested that in obtaining the complex refractive index from a transverse 
dielectric function &(k, U ) ,  it is always better to treat spatial dispersion by expanding 
&(k, U )  about the free-space value of k, namely U / C ,  rather than about k = 0, as in the 
customary procedure due to Ginzburg, since this mistreats Doppler-like spatial dispersion. 
The proposed modification recovers correct results already in zero-order and is: (i) 
computationally advantageous as it needs only first derivatives where second derivatives are 
needed in the usual method, (ii) equivalent to an infinite-order expansion about k = 0, (iii) it 
is intuitively the obvious procedure to follow if k is approximately identified as a photon 
momentum, and (iv) it avoids any formal difficulties arising from the high symmetry of the 
k = 0 neighbourhood. 

In the elementary theory of refractive index and dielectric constant (e.g., see Friedel, 
chapter 1 of Abelks 1972), it is customary to take 

n 2 ( o )  = t T ( W )  (1) 
where ;=(U) is the transverse dielectric function while n ( w )  is the complex refractive 
index. The real and imaginary parts of n(o) are adequate to describe transmission, 
absorption and other aspects of the interaction of light with matter. If we introduce the 
time-dependent electric and displacement vectors E(r, t )  and D(r, t )  of macroscopic 
Maxwell theory we can introduce a more general dielectric tensor by the Fourier 
transformed relation 

Di(k, w > = C  ;ij(k, w)Ej(k, U>, i = 1, 2 ,3  (2) 

where tjj contains a k, o dependence with k and o as free variables. The k is referred to 
as spatial dispersion (Pekar 1957). Let us consider the usual method of extracting a 
refractive index from this k, o dependent dielectric function (see chapter 6 of Abelks 
1972, Ginzburg 1958, Agranovich and Ginzburg 1966). Taking E, D to be normal 
homogeneous waves, it is easy to establish the wave equation 

1 a2b 
c at 

curl curl E +-T 7- = 0 

and hence, for the homogeneous case, 

C[02 t , j (k ,  W )  -c2k2(&j - kikj/k2)]Ej(k, W )  = 0 .  (3) 
The condition for the existence of a non-trivial solution of the above set of equations, 
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namely the vanishing of the determinant of (3), leads us to a dispersion relation 
connecting w, k and Eij. Taking the transverse part of Eij and considering only isotropic 
media this becomes (we suppress vector and tensor notation except when needed to 
avoid confusion), 

w2ET(k, o ) - C 2 k 2  = 0. (4) 

If the k dependence in ET(k, w )  is neglected, using (6) we can easily recover the 
simplest result (1). When spatial dispersion is important, i.e. when the k dependence is 
non-negligible, Ginzburg (1958) introduced the Taylor expansion about k = 0: 

( 5 )  2 2 -  zT(k, w )  = E;(") + k ( a  E 2 / a k 2 ) k = o .  

The linear term vanishes for isotropic media and we shall restrict ourselves to 

ck = on(o )u  (6) 

and connects the photon momentum in the direction of the unit vector U with w and 
depends only on w. Substituting for k from (6) into (5) we have, from (4), the Fresnel 
equation (Landau and Lifshitz 1960), 

second-order expansions. The refractive index is defined by 

E;(w)-(l-E~)(w))n2(o) = o  
where 

for determining n ( w )  from the dielectric constant. Ginzburg (1958), Agranovich and 
Ginzburg (1966) have discussed expansions of ET1 as well as other expansions but 
always at k = 0. These authors themselves point out that there could be some formal 
difficulties in the passage to the limit k = 0 in ET(k, U )  although this limit is physically 
well defined. k = 0 is indeed a very special limit as at this point the distinctions between 
longitudinal and transverse functions begin to disappear (Ambegoakar and Kohn 
1960). In addition k = 0 is usually a point of high degeneracy with special consequences 
to optical selection rules. However all studies of optical spatial dispersion known to the 
author follow the Ginzburg prescription (e.g., Hopfield and Thomas 1963, for a recent 
review see Mills and Burstein 1974, 0 6). Consider the free-space photon momentum 
ko which is usually quite small compared with the characteristic momenta prevailing in 
solids but not necessarily in fluids. The expansion of ET(k, w )  about ko up to second 
order is 

On substituting from (6) this becomes 

where 
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Due to the isotropy of the medium (i.e., X T / a k  at k = 0 is zero) the first and second 
derivatives at ko are related and this gives, to the order of our expansions: 

El = 2E2 (13) 

( E  - ; E l )  - (1 -5E)n2(w) = 0 

and hence (9) gives 

(14) 

as the Fresnel equation for determining the refractive index inclusive of spatial 
dispersion. Equation (14), unlike equation (7), requires the numerical computation of 
only the first derivative of the dielectric function rather than the second derivative 
required in the Ginzburg theory. Even in those exceptional cases where the second 
derivative is easily available, use of the first derivative at a finite value of k, namely ko, is 
equivalent to an infiniteorder summation of the expansion about k = 0, and also avoids 
any formal difficulties which arise owing to the high symmetry of the k = 0 neighbour- 
hood. 

The microscopic theory of the dielectric function E'(k, U )  leads to the linear response 
result (Kubo 1957, Bonch-Bruevich and Tyablikov 1962,O 14): 

where (15) contains the space and time Fourier transform of the retarded current- 
current Green function denoted by ((J(r, t ) ,  J(r' ,  t'))) and wo is the plasma frequency of 
the system. Only the paramagnetic part of the current enters into the Green function. 
If the isolated particles (or quasi-particles) in the system are in the centre of mass 
momentum states 1 and internal energy states p or Y, the transverse part of (15) can be 
reduced to the form ( h  = e = 1) 

where E , ( / )  is the energy of the particle in the pth internal state and centre of mass 
momentum 1 (see equation (17)). In (16) Mpv(f ,  k ,  w )  is a mass operator which shifts 
and broadens the energy levels of the individual particles when the inter-particle 
potential is included in the Hamiltonian. The level populations (n,,,) and the 
generalized oscillator strengths (see equation (18)) appear in (16) and this is a perfectly 
general result for an N particle system applicable to a wide range of problems. In 
particular (16) corresponds to (1.18-1.25) of Adler (1962) in the case of band electrons 
if MgY is neglected and if p, v are interpreted as band indices. Equation (16) also 
corresponds to microscopic results for excitons, fluid or plasma dielectric functions 
(Dharma-wardana 1975) if the terms are suitably interpreted. Equation (16) provides a 
response function inclusive of particle dynamics and a correct treatment of momentum 
conservation in a simple rigorous manner. The extensive use of 'quasistatic' approxi- 
mations in pressure and Stark broadening theories (see the review by Griem 1974, also 
Berman 1972, Berman and Lamb 1971 for attempts to overcome quasistatic approxi- 
mations in the theories of lasers, Jones 1974 for attempts to construct a Doppler 
corrected polarizability) shows that the simplicity of the rigorous theory has not been 
generally appreciated. Note that ad hoc attempts to include particle dynamics, e.g. in 
the theory of dilute gases, usually corrects only the energy denominators although the 
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centre of mass momentum 1 and the scattered photon momentum k appear both in the 
numerator and the denominator of the last term in (16). We have, 

l 2  ( l + k ) ’  1 . k  k 2  
2m 2m m 2m E c r ( I ) - E , ( l + k ) = E C L - E Y + - - - = E c r Y - - - -  

where R is a dipole operator and uk a polarization unit vector for the mode k. Also, in 
general Mcr,,(l, k, o) is of the form 

MCLv(l, k, w )  = Q + bk + c’kk +. . . (19) 

but b may be zero for an expansion about k = 0 owing to symmetry features. However, 
from (17) we see that the Doppler term occurs even for ‘isotropic’ systems and this 
asymmetry would exist in the energy denominators and numerators of the terms in the 
mass operator, so that b could in fact be non-zero. Since spatial dispersion is very much 
a ‘non-local’ characteristic, the mass operator which brings in exchange and correlation 
corrections to the local field should always be considered in spatial dispersion problems 
and any asymmetries in Mp,, will have to be correctly incorporated. This is all the more 
important since spatial dispersion is usually a weak phenomenon. Given equations 
(17), (18) and (19) we see that the Ginzburg method would lead to the wrong result for 
systems with a Doppler-like dispersion term. Even if we separately expand the 
numerator and denominators (instead of expanding gT(k, o) itself) as in Hopfield and 
Thomas (1963), about k = 0, a convenient Fresnel equation is not obtained and linear 
derivatives (which contain the Doppler term) cannot in any case be ignored. 

By contrast, the expansion of CT(k, o) about k = ko is easily ascertained not to 
suffer from any of these difficulties. The usual Doppler profile is recovered in 
zero-order itself, without even having to consider the first derivative C1. What we 
suggest is that the simplest method of treating spatial dispersion in every case is to 
expand & - ( k ,  w )  about the free-space value when in most cases the zero-order term 
;T(ko, o) would have picked up an infinite series of terms in the expansion about k = 0 
and hence would have adequately accounted for spatial dispersion. Once a refractive 
index is calculated in terms of the bare-photon value ko, this could be used to define a 
dressed-photon wavevector which can be used in &(k, o) and the process could be 
iterated if desired. However, since spatial dispersion effects are quite small such 
iterations would hardly ever be necessary. Even in spatial dispersion effects arising 
from the presence of a surface (Hopfield and Thomas 1963, Bullough 1970, Agarwal et 
ul 1971) it would seem that it is physically reasonable to expand around k = ko rather 
than k = 0 since the former corresponds at least to the photon momentum ‘on the 
vacuum side’ of the surface. In effect, although k, w are free variables in equation (2) we 
use an intuitive picture where k and w are tied to a photon-a point of view entirely 
appropriate for extracting a refractive index. 
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